Membrane Remodelling & Metamorphic Proteins

  1. Structural characterization suggests models for monomeric and dimeric forms of full-length ezrin JM Phang, et al, Biochemical Journal 473 (18), 2763-2782
  2. Interaction of human Chloride Intracellular Channel Protein 1 (CLIC1) with lipid bilayers: a fluorescence study JE Hare, et al, Biochemistry 55 (27), 3825-3833
  3. CLIC1 regulates dendritic cell antigen processing and presentation by modulating phagosome acidification and proteolysis K Salao, et al, Biology open, bio. 018119
  4. Members of the chloride intracellular ion channel protein family demonstrate glutaredoxin-like enzymatic activity H Al Khamici et al, PloS one 10 (1), e115699
  5. Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current M Gritti, et al, Oncotarget 5 (22), 11252
  6. CLIC proteins, ezrin, radixin, moesin and the coupling of membranes to the actin cytoskeleton: a smoking gun? L Jiang,et al, Biochimica et Biophysica Acta (BBA)-Biomembranes 1838 (2), 643-657
  7. Point mutations in the transmembrane region of the clic1 ion channel selectively modify its biophysical properties S Averaimo, et al, PloS one 8 (9), e74523
  8. Regulation of the membrane insertion and conductance activity of the metamorphic chloride intracellular channel protein CLIC1 by cholesterol SM Valenzuela,et al, PLoS One 8 (2), e56948
  9. Intracellular chloride channel protein CLIC1 regulates macrophage function through modulation of phagosomal acidification L Jiang,et al., J Cell Sci 125 (22), 5479-5488
  10. Transmembrane extension and oligomerization of the CLIC1 chloride intracellular channel protein upon membrane interaction SC Goodchild,et al Biochemistry 50 (50), 10887-10897
  11. Structural gymnastics of multifunctional metamorphic proteins SC Goodchild, et al, Biophysical reviews 3 (3), 143
  12. Crystal structure of importin‐α bound to a peptide bearing the nuclear localisation signal from chloride intracellular channel protein 4 AV Mynott, et al, The FEBS journal 278 (10), 1662-1675
  13. S-nitrosylation regulates nuclear translocation of chloride intracellular channel protein CLIC4 M Malik, et al, Journal of Biological Chemistry 285 (31), 23818-23828
  14. Metamorphic response of the CLIC1 chloride intracellular ion channel protein upon membrane interaction SC Goodchild, et al, Biochemistry 49 (25), 5278-5289
  15. The enigma of the CLIC proteins: Ion channels, redox proteins, enzymes, scaffolding proteins? DR Littler, et al, FEBS letters 584 (10), 2093-2101
  16. Structure of human CLIC3 at 2 Å resolution DR Littler, et al, Proteins: Structure, Function, and Bioinformatics 78 (6), 1594-1600
  17. Generation and characterization of mice with null mutation of the chloride intracellular channel 1 gene MR Qiu,et al, genesis 48 (2), 127-136
  18. Oxidation promotes insertion of the CLIC1 chloride intracellular channel into the membrane SC Goodchild, et al, European biophysics journal 39 (1), 129
  19. CLIC1 function is required for β-amyloid-induced generation of reactive oxygen species by microglia RH Milton, et al, Journal of Neuroscience 28 (45), 11488-11499
  20. Comparison of vertebrate and invertebrate CLIC proteins: The crystal structures of Caenorhabditis elegans EXC‐4 and Drosophila melanogaster DmCLIC DR Littler, et al, Proteins: Structure, Function, and Bioinformatics 71 (1), 364-378
  21. Structure of the Janus protein human CLIC2 BA Cromer, et al, Journal of molecular biology 374 (3), 719-731
  22. Crystal structure of the soluble form of the redox‐regulated chloride ion channel protein CLIC4 DR Littler,et al, The FEBS journal 272 (19), 4996-5007
  23. Involvement of the intracellular ion channel CLIC1 in microglia-mediated β-amyloid-induced neurotoxicity G Novarino, et al, Journal of Neuroscience 24 (23), 5322-5330
  24. The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition DR Littler, et al, Journal of Biological Chemistry 279 (10), 9298-9305
  25. Recombinant CLIC1 (NCC27) assembles in lipid bilayers via a pH-dependent two-state process to form chloride ion channels with identical characteristics to those observed in Chinese hamster ovary cells expressing CLIC1 K Warton, et al, Journal of Biological Chemistry
  26. NCC27 (CLIC1) interacts with artifical bylayer in a pH dependent manner to form chloride ion channels M Mazzanti, et al, Biophysical Journal 82 (1), 244A-244A
  27. Crystal structure of a soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4-Å resolution SJ Harrop, et al, Journal of Biological Chemistry 276 (48), 44993-45000

Nanomachines & Molecular Motors

  1. Construction of a chassis for a tripartite protein-based molecular motor LSR Small,et al., ACS synthetic biology 6 (6), 1096-1102
  2. Motor properties from persistence: a linear molecular walker lacking spatial and temporal asymmetry MJ Zuckermann et al, New Journal of Physics 17 (5), 055017
  3. Design and construction of the lawnmower, an artificial burnt-bridges motor S Kovacic et al, IEEE transactions on nanobioscience 14 (3), 305-312
  4. Construction and characterization of kilobasepair densely labeled peptide-DNA S Kovacic et al, Biomacromolecules 15 (11), 4065-4072
  5. Introducing a Kinesin-Inspired Nanomotor Concept MJ Zuckermann, et al, Biophysical Journal 106 (2), 782a
  6. Light Driven Conformational Switching: An Approach to Creating Designed Protein Motion E Bromley,et al, Biophysical Journal 106 (2), 244a-245a
  7. Fluidic switching in nanochannels for the control of Inchworm: a synthetic biomolecular motor with a power stroke CS Niman,et al, Nanoscale 6 (24), 15008-15019
  8. The Lawnmower: An Autonomous Synthetic Protein Motor L Samii, et al, Biophysical Journal 104 (2), 545a
  9. Controlled microfluidic switching in arbitrary time-sequences with low drag CS Niman, et al, Lab on a Chip 13 (12), 2389-2396
  10. Squaring the circle in peptide assembly: from fibers to discrete nanostructures by de novo design AL Boyle, et al, Journal of the American Chemical Society 134 (37), 15457-15467
  11. The Inchworm: Construction of a Biomolecular Motor with a Power Stroke M Balaz, et al, Biophysical Journal 102 (3), 206a
  12. Microfluidic Device for Controlled Fluid Switching to be used with Chemically Powered Molecular Motors on Surface Bound Tracks C Niman,et al, Biophysical Journal 102 (3), 717a
  13. Design and construction of a one-dimensional DNA track for an artificial molecular motor S Kovacic, et al, Journal of Nanomaterials 2012, 6
  14. Tuning the performance of an artificial protein motor NJ Kuwada, et al,Physical Review E 84 (3), 031922
  15. Time-dependent motor properties of multipedal molecular spiders L Samii,et al, Physical Review E 84 (3), 031111
  16. Simulation Studies of a TRI-PEDAL, Protein-Based Artificial Molecular Motor NJ Kuwada, et al, Biophysical Journal 98 (3), 388a
  17. The tumbleweed: towards a synthetic protein motor EHC Bromley,et al, HFSP journal 3 (3), 204-212
  18. Synthetic, Protein-Based Molecular Motors NJ Kuwada, et al, Biophysical Journal 96 (3), 300a

Non-Trivial Quantum Effects in Biology

  1. Cooperative Subunit Refolding of a Light‐Harvesting Protein through a Self‐Chaperone Mechanism AJ Laos et al., Angewandte Chemie 129 (29), 8504-8508
  2. Vibronic resonances facilitate excited-state coherence in light-harvesting proteins at room temperature F Novelli et al, The journal of physical chemistry letters 6 (22), 4573-4580
  3. Spectroscopic studies of cryptophyte light harvesting proteins: vibrations and coherent oscillations PC Arpin et al, The Journal of Physical Chemistry B 119 (31), 10025-10034
  4. Polymersomes prepared from thermoresponsive fluorescent protein–polymer bioconjugates: capture of and report on drug and protein payloads CK Wong et al Angewandte Chemie International Edition 54 (18), 5317-5322
  5. Disentangling Electronic and Vibrational Coherence in the Phycocyanin-645 Light-Harvesting Complex JA Davis, et al, Ultrafast Phenomena XIX, 591-594
  6. Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light-harvesting proteins SJ Harrop, et al, Proceedings of the National Academy of Sciences 111 (26), E2666-E2675
  7. Quantum Coherence and its Impact on Biomimetic Light-Harvesting AJ Laos, et al, Australian Journal of Chemistry 67 (5), 729-739
  8. Coherence dynamics in light-harvesting complexes with two-colour spectroscopy GH Richards, et al, EPJ Web of Conferences 41, 08009
  9. Excited state coherent dynamics in light-harvesting complexes from photosynthetic marine algae GH Richards, et al, Journal of Physics B: Atomic, Molecular and Optical Physics 45 (15), 154015
  10. Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting CY Wong, et al, Nature chemistry 4 (5), 396
  11. Coherent vibronic coupling in light-harvesting complexes from photosynthetic marine algae GH Richards, et al, The journal of physical chemistry letters 3 (2), 272-277
  12. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis DB Turner, et al, Physical Chemistry Chemical Physics 14 (14), 4857-4874
  13. Flow of excitation energy in the cryptophyte light-harvesting antenna phycocyanin 645 A Marin, et al, Biophysical journal 101 (4), 1004-1013
  14. Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy DB Turner, et al, The Journal of Physical Chemistry Letters 2 (15), 1904-1911
  15. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature E Collini,et al, Nature 463 (7281), 644
  16. Phycobiliprotein diffusion in chloroplasts of cryptophyte Rhodomonas CS24 T Mirkovic, et al, Photosynthesis research 100 (1), 7-17
  17. Phycocyanin sensitizes both photosystem I and photosystem II in cryptophyte Chroomonas CCMP270 cells CD van der Weij-De, et al, Biophysical journal 94 (6), 2423-2433
  18. Ultrafast light harvesting dynamics in the cryptophyte phycocyanin 645 T Mirkovic, et al, Photochemical & Photobiological Sciences 6 (9), 964-975
  19. How energy funnels from the phycoerythrin antenna complex to photosystem I and photosystem II in cryptophyte Rhodomonas CS24 cells CD van der Weij-De Wit, et al, The Journal of Physical Chemistry B 110 (49), 25066-25073
  20. The photophysics of cryptophyte light-harvesting AB Doust, et al, Journal of Photochemistry and Photobiology A: Chemistry 184 (1-2), 1-17
  21. Mediation of ultrafast light-harvesting by a central dimer in phycoerythrin 545 studied by transient absorption and global analysis AB Doust, et al, The Journal of Physical Chemistry B 109 (29), 14219-14226
  22. Structural studies of a cryptophyte light harvesting phycocyanin PC645 KE Wilk, et al, The Febs Journal 272, 454
  23. Developing a structure–function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy AB Doust, et al, Journal of molecular biology 344 (1), 135-153

Dynamic Pattern Formation in Cells

  1. Non-linear Min protein interactions generate harmonics that signal mid-cell division in Escherichia coli, JC Walsh, CN Angstmann, IG Duggin, PMG Curmi, PloS one 12 (10), e0185947
  2. Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: investigating acetamidase gene functionY Liao, et al, Scientific reports 6, 34639
  3. Patterning of the MinD cell division protein in cells of arbitrary shape can be predicted using a heuristic dispersion relation JC Walsh, et al, AIMS Biophysics
  4. Molecular interactions of the Min protein system reproduce spatiotemporal patterning in growing and dividing Escherichia coli cells JC Walsh, et al,PloS one 10 (5), e0128148

Archaea & Cold Adaptation

  1. Single TRAM domain RNA‐binding proteins in Archaea: functional insight from Ctr3 from the Antarctic methanogen Methanococcoides burtonii KS Siddiqui, et al, Environmental microbiology 18 (9), 2810-2824
  2. Characterization of a temperature-responsive two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii T Najnin, et al, Scientific reports 6, 24278
  3. The RNA polymerase subunits E/F from the Antarctic archaeon Methanococcoides burtonii bind to specific species of mRNA D De Francisci, et al, Environmental microbiology 13 (8), 2039-2055
  4. Chaperonins from an Antarctic archaeon are predominantly monomeric: crystal structure of an open state monomer O Pilak, et al, Environmental microbiology 13 (8), 2232-2249
  5. Crystal structure of Lsm3 octamer from Saccharomyces cerevisiae: implications for Lsm ring organisation and recruitment N Naidoo, et al, Journal of molecular biology 377 (5), 1357-1371
  6. Structure and function of cold shock proteins in archaea L Giaquinto, et al, Journal of bacteriology 189 (15), 5738-5748
  7. Role of lysine versus arginine in enzyme cold‐adaptation: Modifying lysine to homo‐arginine stabilizes the cold‐adapted α‐amylase from Pseudoalteramonas haloplanktis KS Siddiqui,et al, PROTEINS: Structure, Function, and Bioinformatics 64 (2), 486-501
  8. 17 Proteins from Psychrophiles R Cavicchioli, et al, Methods in Microbiology 35, 395-436
  9. Predicted Roles for Hypothetical Proteins in the Low-Temperature Expressed Proteome of the Antarctic Archaeon Methanococcoides burtonii NFW Saunders, et al, Journal of proteome research 4 (2), 464-472
  10. A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii A Goodchild, et al, Molecular microbiology 53 (1), 309-321
  11. An online database for the detection of novel archaeal sequences in human ESTs NFW Saunders, et al, Bioinformatics 20 (15), 2361-2362
  12. Pathogenic archaea: do they exist? R Cavicchioli, et al, Bioessays 25 (11), 1119-1128
  13. Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii NFW Saunders, et al, Genome research 13 (7), 1580-1588
  14. Homomeric Ring Assemblies of Eukaryotic Sm Proteins Have Affinity for Both RNA and DNA crystal structure of an oligomeric complex of yeast Smf BM Collins, et al, Journal of Biological Chemistry 278 (19), 17291-17298
  15. Crystal structure of a heptameric Sm-like protein complex from archaea: implications for the structure and evolution of snRNPs1 BM Collins, et al, Journal of molecular biology 309 (4), 915-923
  16. Cold stress response in Archaea R Cavicchioli, et al, Extremophiles 4 (6), 321-331

Molecular Chaperones

  1. Chaperonins from an Antarctic archaeon are predominantly monomeric: crystal structure of an open state monomer O Pilak, et al,Environmental microbiology 13 (8), 2232-2249

Integrons and Gene Cassette Proteins

  1. Integron gene cassettes: a repository of novel protein folds with distinct interaction sites V Sureshan, et al, PLoS One 8 (1), e5293
  2. Crystal structure of an integron gene cassette-associated protein from Vibrio cholerae identifies a cationic drug-binding module CN Deshpande, et al, PLoS One 6 (3), e16934
  3. Structural genomics of the bacterial mobile metagenome: an overview A Robinson, et al, Structural Proteomics, 589-595
  4. A putative house‐cleaning enzyme encoded within an integron array: 1.8 Å crystal structure defines a new MazG subtype A Robinson,et al, Molecular microbiology 66 (3), 610-621
  5. Integron-associated mobile gene cassettes code for folded proteins: the structure of Bal32a, a new member of the adaptable α+ β barrel family A Robinson, et al, Journal of molecular biology 346 (5), 1229-1241
  6. In vivo protein cyclization promoted by a circularly permuted Synechocystis sp. PCC6803 DnaB mini-intein NK Williams, et al, Journal of Biological Chemistry 277 (10), 7790-7798

Protease Inhibitors and Serpins

  1. Arabidopsis AtSerpin1, crystal structure and in vivo interaction with its target protease responsive to dessication-21 (RD21) N Lampl, et al, Journal of Biological Chemistry 285 (18), 13550-13560
  2. Plasminogen activator inhibitor-2 is highly tolerant to P8 residue substitution—implications for serpin mechanistic model and prediction of nsSNP activities DA Di Giusto,et al, Journal of molecular biology 353 (5), 1069-1080
  3. Serpins in unicellular Eukarya, Archaea, and Bacteria: sequence analysis and evolution TH Roberts,et al, Journal of molecular evolution 59 (4), 437-447
  4. Interaction between the P14 residue and strand 2 of β-sheet B is critical for reactive center loop insertion in plasminogen activator inhibitor-2 DN Saunders, et al, Journal of Biological Chemistry 276 (46), 43383-43389
  5. Crystal structure of the complex of plasminogen activator inhibitor 2 with a peptide mimicking the reactive center loop L Jankova, et al, Journal of Biological Chemistry 276 (46), 43374-43382

β Sheet Structures in Proteins

  1. Twist and shear in β-sheets and β-ribbons BK Ho & PMG Curmi Journal of molecular biology 317 (2), 291-308
  2. An analysis of side chain interactions and pair correlations within antiparallel β‐sheets: The differences between backbone hydrogen‐bonded and non‐hydrogen‐bonded residue pairs M. A. Wouters & PMG Curmi Proteins. 1995 Jun;22(2):119-31